Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix
نویسندگان
چکیده
The origin of protein import was a key step in the endosymbiotic acquisition of mitochondria. Though the main translocon of the mitochondrial outer membrane, TOM40, is ubiquitous among organelles of mitochondrial ancestry, the transit peptides, or N-terminal targeting sequences (NTSs), recognised by the TOM complex, are not. To better understand the nature of evolutionary conservation in mitochondrial protein import, we investigated the targeting behavior of Trichomonas vaginalis hydrogenosomal proteins in Saccharomyces cerevisiae and vice versa. Hydrogenosomes import yeast mitochondrial proteins even in the absence of their native NTSs, but do not import yeast cytosolic proteins. Conversely, yeast mitochondria import hydrogenosomal proteins with and without their short NTSs. Conservation of an NTS-independent mitochondrial import route from excavates to opisthokonts indicates its presence in the eukaryote common ancestor. Mitochondrial protein import is known to entail electrophoresis of positively charged NTSs across the electrochemical gradient of the inner mitochondrial membrane. Our present findings indicate that mitochondrial transit peptides, which readily arise from random sequences, were initially selected as a signal for charge-dependent protein targeting specifically to the mitochondrial matrix. Evolutionary loss of the electron transport chain in hydrogenosomes and mitosomes lifted the selective constraints that maintain positive charge in NTSs, allowing first the NTS charge, and subsequently the NTS itself, to be lost. This resulted in NTS-independent matrix targeting, which is conserved across the evolutionary divide separating trichomonads and yeast, and which we propose is the ancestral state of mitochondrial protein import.
منابع مشابه
The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis.
The human pathogen Trichomonas vaginalis harbors hydrogenosomes, organelles of mitochondrial origin that generate ATP through hydrogen-producing fermentations. They contain neither genome nor translation machinery, but approximately 500 proteins that are imported from the cytosol. In contrast to well-studied organelles like Saccharomyces mitochondria, very little is known about how proteins are...
متن کاملTargeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import.
Trichomonads are early-diverging eukaryotes that lack both mitochondria and peroxisomes. They do contain a double membrane-bound organelle, called the hydrogenosome, that metabolizes pyruvate and produces ATP. To address the origin and biological nature of hydrogenosomes, we have established an in vitro protein import assay. Using purified hydrogenosomes and radiolabeled hydrogenosomal precurso...
متن کاملPartitioning of malate dehydrogenase isoenzymes into glyoxysomes, mitochondria, and chloroplasts.
Malate dehydrogenase isoenzymes catalyzing the oxidation of malate to oxaloacetate are highly active enzymes in mitochondria, in peroxisomes, in chloroplasts, and in the cytosol. Determination of the primary structure of the isoenzymes has disclosed that they are encoded in different nuclear genes. All three organelle-targeted malate dehydrogenases are synthesized with an amino terminal extensi...
متن کاملDissociation of import of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria from proteolytic processing of the presequence.
The correlation between the import of the Rieske iron-sulfur protein into the mitochondrial matrix and processing of the precursor protein by matrix processing peptidase was investigated using high concentrations of metal chelators and iron-sulfur protein in which the recognition site for the matrix processing peptidase was destroyed by site-directed mutagenesis. High concentrations of EDTA and...
متن کاملArabidopsis nuclear-encoded plastid transit peptides contain multiple sequence subgroups with distinctive chloroplast-targeting sequence motifs.
The N-terminal transit peptides of nuclear-encoded plastid proteins are necessary and sufficient for their import into plastids, but the information encoded by these transit peptides remains elusive, as they have a high sequence diversity and lack consensus sequences or common sequence motifs. Here, we investigated the sequence information contained in transit peptides. Hierarchical clustering ...
متن کامل